Text Similarity API

The Text Similarity API computes the similarity score between two pieces of text. It uses state-of-the-art NLP machine learning models to first embed (see our Embddings API) the texts into 768-dimension vectors, and then computes the cosine similarity between the two vectors.

/v1/textsimilarity POST

https://api.api-ninjas.com/v1/textsimilarity

Returns a similarity score between 0 and 1 (1 is similar and 0 is dissimilar) of two given texts.


Body Parameters

  • text_1  required

    First input text. Maximum 5000 characters.

  • text_2  required

    Second input text. Maximum 5000 characters.

Headers

  • X-Api-Key  required

    API Key associated with your account.

Sample Request Live Demo!

text_1
text_2
https://api.api-ninjas.com/v1/textsimilarity

Headers

X-Api-KeyLog in or sign up to get your API Key

Sample Response

JSON
1 2 3 { "similarity": 0.7749438285827637 }

Code Examples

1 2 3 4 5 6 7 8 import requests body = { 'text_1': 'This is an example sentence.', 'text_2': 'This is just another example sentence.' } api_url = 'https://api.api-ninjas.com/v1/textsimilarity' response = requests.post(api_url, headers={'X-Api-Key': 'YOUR_API_KEY'}, json=body) if response.status_code == requests.codes.ok: print(response.text) else: print("Error:", response.status_code, response.text)

If your programming language is not listed in the Code Example above, you can still make API calls by using a HTTP request library written in your programming language and following the above documentation.